【资料图】
最近这段时间总有小伙伴问小编余弦定理的三种证明方法 证明余弦定理余弦定理证明方法是什么,小编为此在网上搜寻了一些有关于余弦定理的三种证明方法 证明余弦定理余弦定理证明方法的知识送给大家,希望能解答各位小伙伴的疑惑。
今天来聊聊关于余弦定理的三种证明方法,证明余弦定理余弦定理证明方法的文章,现在就为大家来简单介绍下余弦定理的三种证明方法,证明余弦定理余弦定理证明方法,希望对各位小伙伴们有所帮助。
1、余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活.对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质a^2=b^2+c^2-2*b*c*CosAb^2=a^2+c^2-2*a*c*CosBc^2=a^2+b^2-2*a*b*CosCCosC=(a^2+b^2-c^2)/2abCosB=(a^2+c^2-b^2)/2acCosA=(c^2+b^2-a^2)/2bc证明:如图:∵a=b-c ∴a^2=(b-c)^2 (证明中前面所写的a,b,c皆为向量,^2为平方)拆开即a^2=b^2+c^2-2bc再拆开,得a^2=b^2+c^2-2*b*c*CosA同理可证其他,而下面的CosA=(c^2+b^2-a^2)/2bc就是将CosA移到右边表示一下.---------------------------------------------------------------------------------------------------------------平面几何证法:在任意△ABC中做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:AC^2=AD^2+DC^2b^2=(sinB*c)^2+(a-cosB*c)^2b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosBb^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2b^2=c^2+a^2-2ac*cosBcosB=(c^2+a^2-b^2)/2ac从余弦定理和余弦函数的性质可以看出,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角一定是直角,如果小于第三边的平方,那么第三边所对的角是钝角,如果大于第三边,那么第三边所对的角是锐角.即,利用余弦定理,可以判断三角形形状.同时,还可以用余弦定理求三角形边长取值范围.这是百度上的,有些时候自己百度下就好了,。
相信通过证明余弦定理余弦定理证明方法这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。
关键词: